n QUCI ntstqmp Security Assessment Certificate

2024/06/06— Quantstamp Verified

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summarg

Type DeFi Lending Platform
| ALLISSUES |
H o oo . . . | ADDRESSED
Auditors Faycal Lalidji, Senior Security Engineer upr
Cristiano Silva, Research Engineer 7

Guillermo Escobero, Security Auditor

Timeline 2024-06-1 through 2024-06-15 A High Risk The issue puts a large number of users’
sensitive information at risk, or is

EVM London reasonably likely to lead to
catastrophic impact for client’s

Languages Solidity reputation or serious financial

implications for client and users.

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual ~ Medium Risk The issue puts a subset of users’

Review sensitive information at risk, would be

detrimental for the client’s reputation if

Specification None exploited, or is reasonably likely to lead
to moderate financial impact.

Documentation Quality e —— |)

Test Quality Medium Low Risk The risk is relatively small and could not

be exploited on a recurring basis, or is a
Source Code risk that the client has indicated is low-
Repository Commit impact in view of the client’s business

circumstances.

silo-contracts 9c20d23
Informational The issue does not post an immediate
risk, but is relevant to security best
silo-core-v Initial Reaudit practices or Defence in Depth.
(4cQeltbe)
? Undetermined The impact of the issue is uncertain.
Total Issues 14 (8 Resolved)
High Risk Issues O (O Resolved)
. . © Unresolved Acknowledged the existence of the risk,
Medium Risk lssues 5 (4 Resolved) O Unresolved and decided to accept it without
. 6 Acknowledged engaging in special efforts to control it.
Low Risk Issues 3 (1 Resolved) g
8 Resolved
Informational Risk Issues 6 (3 Resolved) Acknowledged The issue remains in the code but is a
. . result of an intentional business or
Undetermined Risk Issues O (O Resolved)

design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment

settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

° Mitigated Implemented actions to minimize the

impact or likelihood of the risk.

https://github.com/silo-finance/silo-contracts/commit/9c20d2382c3bb32f10cec4687712fac352cf1828
https://github.com/silo-finance/silo-contracts/commit/9c20d2382c3bb32f10cec4687712fac352cf1828
https://github.com/silo-finance/silo-core-v1/commit/4c9e45cd4ae637bbbd2ded914c014da65343430b
https://github.com/silo-finance/silo-core-v1/commit/4c9e45cd4ae637bbbd2ded914c014da65343430b
https://github.com/silo-finance/silo-core-v1/commit/4c9e45cd4ae637bbbd2ded914c014da65343430b

Summary of Findings

Initial Audit:
Through reviewing the code, we found 19 potential issues with four medium severity issues, six low, and 9 informational. We recommend carefully re-considering the logic to ensure the

safety of the users.

First Reaudit: Most previously highlighted issues have been fixed, acknowledged, or mitigated except QSP-7, while new issues that must be fixed before deployment have been added to
the report (QSP-14 and 15).

Final Reaudit: All highlighted issues have been addressed.

ID Description Severity Status

QSP-1 Violating Checks Effects Interactions Pattern A Medium Mitigated
QSP-2 Unsafe Cast Operation A Medium Fixed

QSP-3 Adding New Bridge Asset May Fail A Medium Fixed

QSP-4 Adding New Bridge Asset Do Not Sync the Bridge Pool A Medium Fixed

QSP-5 Cannot Add Previously Removed Bridge Asset Fixed

QSP-6 Using call() Instead of transfer() For Sending Ether Acknowledged
QSP-7 Confusion In Return Value Acknowledged
QSP-8 Unlocked Pragma Acknowledged
QSP-9 Unnecessary Public Visibility for State Variables Fixed

QSP-10 Use of Hard-Coded Values Fixed

QSP-11 Clone-and-Own Acknowledged
QSP-12 Allowance Double-Spend Exploit Mitigated
QSP-13 Ownership Can Be Renounced Acknowledged
QSP-14 assertandgetdecimals(...) Does Not Throw in Case of a Contract that Is Not Erc20 Compliant A Medium Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

 Transaction-ordering dependence

« Timestamp dependence

» Mishandled exceptions and call stack limits

« Unsafe external calls

* Integer overflow / underflow

« Number rounding errors

« Reentrancy and cross-function vulnerabilities
« Denial of service / logical oversights

 Access control

« Centralization of power

« Business logic contradicting the specification
« Code clones, functionality duplication

« Gas usage

* Arbitrary token minting

Methodology
The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp

describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and control based on the

established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup
Tool Setup:

e Slither v0.8.3

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither

Findings

QSP-1 Violating Checks Effects Interactions Pattern

Severity: Medium Risk

Status: Mitigated

File(s) affected: contracts/*

Description: The Checks-Effects-Interactions (CEl) pattern describes a way of organizing the statements in a function such that a contract’s state is left in a consistent state before calling out to
other contracts. This is done by classifying every statement as either a check, an effect (state change), or an interaction, and ensuring that they are strictly in this order. By placing effects
before interactions, we make sure that all state changes are done before any potential reentrancy point, leaving the state consistent. In fact, even when we use the modifier nonReentrant, we
must always use the Checks-Effects-Interaction pattern to reduce the attack surface for malicious contracts trying to hijack control flow after an external call. The CEl pattern is not adopted in
several functions of the application. As an example, let's take a look at the implementation of the function BaseSilo. deposit(...) presented below.

function BaseSilo._deposit(
address _asset,
address _from,
address _depositor,
uint256 _amount,
bool _collateralOnly
)
internal
nonReentrant
validateMaxDepositsAfter(_asset)
{
// MUST BE CALLED AS FIRST METHOD! we can allow for checks to be run before
_accruelnterest(_asset, block.timestamp);
if (!depositPossible(_asset, _depositor)) revert('"DepositNotPossible()");
AssetStorage storage _state = state[_asset];
uint256 balanceBefore = ERC20(_asset).balanceOf(address(this));
ERC20(_asset).safeTransferFrom(_from, address(this), _amount);
uint256 balanceAfter = ERC20(_asset).balanceOf(address(this));
_amount = balanceAfter - balanceBefore;
uint256 totalDepositsCached = _collateralOnly ? _state.collateralOnlyDeposits : _state.totalDeposits;
if (_collateralOnly) {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralOnlyToken.totalSupply());
_state.collateralOnlyDeposits = totalDepositsCached + _amount;
_state.collateralOnlyToken.mint(_depositor, share);
} else {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralToken.totalSupply());
_state.totalDeposits = totalDepositsCached + _amount;
_state.collateralToken.mint(_depositor, share);
3
emit Deposit(_asset, _depositor, _amount, _collateralOnly);
3

We notice that the interaction with the external contract happens in the middle of the function.
When following the CEl pattern, this line should be the last line of the function. Adapting the function to such a scenario is simple. Basically, we must postpone the external call and include a
require such as the transferred amount (new variable) is equal to the input parameter _amount. The code will look similar to the one below.

function _deposit(
address _asset,
address _from,
address _depositor,
uint256 _amount,
bool _collateralOnly
)
internal
nonReentrant
validateMaxDepositsAfter(_asset)
{
// Checks section: preparing the environment for executing the function
_accruelnterest(_asset, block.timestamp);
if (!depositPossible(_asset, _depositor)) revert('"DepositNotPossible()");
AssetStorage storage _state = state[_asset];
uint256 totalDepositsCached = _collateralOnly ? _state.collateralOnlyDeposits : _state.totalDeposits;
// Effects section: changing state variables
if (_collateralOnly) {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralOnlyToken.totalSupply());
_state.collateralOnlyDeposits = totalDepositsCached + _amount;
_state.collateralOnlyToken.mint(_depositor, share);
} else {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralToken.totalSupply());
_state.totalDeposits = totalDepositsCached + _amount;
_state.collateralToken.mint(_depositor, share);
3
// Interactions Section: making external call to other contracts
uint256 balanceBefore = ERC20(_asset).balanceOf(address(this));
ERC20(_asset).safeTransferFrom(_from, address(this), _amount);
uint256 balanceAfter = ERC20(_asset).balanceOf(address(this));
// Should we revert?
uint256 amount = balanceAfter - balanceBefore;
require(_amount==amount, "Incorrect amount: reverting the whole operation");
emit Deposit(_asset, _depositor, _amount, _collateralOnly);
3

The same logic must be applied to each and every function making external calls:

* BaseSilo. withdraw(...), execute external function calls when runing BaseSilo. withdrawAsset(...) before setting the final contract state. We recommend

to execute the transfer calls in a third function after setting State.collateralOnlyDeposits or State.totalDeposits.
» _repay execute a transfer before setting the final contract state.

« repay must include a non-reentrant modifier for safety.

All the other contracts that present calls to external contracts must be adapted to the CEl pattern, even those having the nonReentrant modifier.

Recommendation: Review all the contracts in order to assure that all the functions making external calls are following the Checks-Effects-Interaction Pattern, even functions having the
nonReentrant modifier must follow the CEl pattern. Otherwise the application will be under risk.

Update: QSP-1is partially fixed, BaseSilo. repay(. . .) still does not respect the CEl pattern.

https://github.com/crytic/slither

QSP-2 Unsafe Cast Operation

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/lib/ModelStats. sol

Description: ModelStats.calculateUtilization(. . .) should use SafeCast when converting _dp to uint256, or if _dp is an always positive value change its declaration to uint256.
Please note that using solidity 0.8.0 or higher does not prevent incorrect cast operations.

QSP-3 Adding New Bridge Asset May Fail

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/SiloRepository.sol

Description: If a new bridge asset is meant to be added to the pool and if the bridge asset is already set within a silo the SiloRepository.bridgePool is set then the admin won't be able to
add that asset as a bridge asset. An attacker can use this to prevent the admins from adding new bridge assets purposefully since adding new silo is allowed to anyone.

Recommendation: This behavior should be either clearly documented or fixed.

Update: Fixed by adding extra comments in https://github.com/silo-finance/silo-contracts/pull/322.

QSP-4 Adding New Bridge Asset Do Not Sync the Bridge Pool

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/SiloRepository.sol
Description: in SiloRepository adding new bridge asset won't sync the actual bridge pool since the external call is set before adding the asset to the bridge list.
Recommendation: Sync the bridge assets after adding the new asset to the list.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/316.

QSP-5 Cannot Add Previously Removed Bridge Asset

Status: Fixed

File(s) affected: contracts/SiloRepository.sol

Description: Adding back a bridge asset that was removed using SiloRepository.addBridgeAsset(. ..) will not allow its reactivation in the Silo contract since there is a check in
_initAssetsTokens(...) that prevent that.

Recommendation: Add the missing else branch in the if condition of L229, resetting the asset status to active.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/224.

QSP-6 Using cati1() Instead of transter() For Sending Ether

Status: Acknowledged

File(s) affected: contracts/SiloRouter. sol
Description: The functions below are using call () to transfer Ether instead of the function transfer(). Since call () forwards all the gas, it can be exploited in reentrancy attacks.

e SiloRouter. sendAsset(...)

e SiloRouter.execute(...)

Update: "We won’t do transfer() it will fail for some smart contracts".

QSP-7 Confusion In Return Value

Status: Acknowledged

File(s) affected: contracts/lib/Ping. sol

Description: ERC20 Standard decimal s() can return O as a decimal value. Therefore, returning O in case of an unsuccessful transaction or an invalid address can lead to confusion or to a
possible issue when using Ping.decimals(...).

Recommendation: Change the return value in case of a failed transaction or invalid address.

Update: Acknowledged in commit hbe2bddae241fccf3btb5d69b2d47f/7fhctOeafb2

QSP-8 Unlocked Pragma

https://github.com/silo-finance/silo-core-v1/compare/4c9e45cd4ae637bbbd2ded914c014da65343430b%E2%80%A64be2bddae241fccf3b45d69b2d47f7f4c40eaf52#diff-c3a9cc00cabce9d4bf9bae9cb69332d0ad173090cf59f380cabf34e3439ec21bR16-R17

Status: Acknowledged

Related Issue(s): SWC-103

Description: Every Solidity file specifies in the header a version number of the format pragma solidity (A)@.*.*.The caret () before the version number implies an unlocked pragma,
meaning that the compiler will use the specified version and above, hence the term "unlocked".

The project is using different versions of solidity and pragma directives: 0.7.6,>=0.4.0,>=0.5.0,>=0.5.0<0.8.0,>=0.6.0<0.8.0,>=0.6.0<0.9.0,>=0.7.0,>=0.7.0<0.9.0,
"9.7.0,0.8.7,>=0.7.5,70.8.0.

Recommendation: For consistency and to prevent unexpected behavior in the future, we recommend removing the caret to lock the file onto a specific Solidity version.

QSP-9 Unnecessary Public Visibility for State Variables

Status: Fixed

File(s) affected: contracts/¥*

Description: Several contracts present state variables with publ ic visibility. A contract variable marked public will generate a getter function to read its value, and there’s no way to apply a
modifier to that function. This opens up the possibility for exploitation, since it can result in other contracts observing inconsistent state due to broken invariants.

Recommendation: Turning the visibility of the state variables to private will reduce contract size and reduce the risk of possible exploits.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/321.

QSP-10 Use of Hard-Coded Values

Status: Fixed

File(s) affected: contracts/SiloLens.sol

Description: The function SiloLens.depositAPY(. . .) has the hard-coded value 1e18, which is not a good programming practice. The function is listed below.

function depositAPY(ISilo _silo, address _asset) external view returns (uint256) {
IPriceProvidersRepository priceProviderRepo = siloRepository.priceProvidersRepository();
uint256 assetPrice = priceProviderRepo.getPrice(_asset);
uint256 assetDecimals = ERC20(_asset).decimals();

// amount of debt generated per year in asset decimals

uint256 generatedDebtAmount = totalBorrowAmountWithInterest(_silo, _asset) * borrowAPY(_silo, _asset) / 1el8;
// generated debt value in ETH per year in 18 decimals

uint256 generatedDebtValue = generatedDebtAmount * assetPrice / 10 ** assetDecimals;

// value of deposits in ETH in 18 decimals

uint256 totalDepositsValue = totalDepositsWithInterest(_silo, _asset) * assetPrice / 10 ** assetDecimals;

return generatedDebtValue * 1el8 / totalDepositsValue;

Recommendation: Use the proper constant to represent the value. In case the values are related, use the same constant.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/237.

QSP-11 Clone-and-Own

Status: Acknowledged

File(s) affected: contracts/governance/TreasuryVester.sol, contracts/lLib/PRBMathCommon. sol, contracts/lib/PRBMathSD59x18.sol

Description: The clone-and-own approach involves copying and adjusting open source code at one's own discretion. From the development perspective, it is initially beneficial as it reduces the
amount of effort. However, from the security perspective, it involves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or

unintentionally modified upstream libraries.

Recommendation: Rather than the clone-and-own approach, a good industry practice is to use a package manager (e.g., npm) for handling library dependencies. This eliminates the clone-
and-own risks yet allows for following best practices, such as, using libraries. If the file is cloned anyway, a comment including the repository, commit hash of the version cloned, and the

summary of modifications (if any) should be added. This helps to improve traceability of the file.

QSP-12 Allowance Double-Spend Exploit

Status: Mitigated

File(s) affected: contracts/governance/SiloGovernanceToken.sol, contracts/utils/ShareToken.sol

Description: As they presently are constructed, SiloGovernanceToken and ShareToken tokens are vulnerable to the allowance allowance double-spend exploit, as with other ERC20 tokens.

Exploit Scenario: 1. Alice allows Bob to transfer N amount of Alice's tokens (N>0) by calling the approve() method on Token smart contract (passing Bob's address and N as method

arguments)

1. After some time, Alice decides to change from N to M (M>0) the number of Alice's tokens Bob is allowed to transfer, so she calls the approve() method again, this time

passing Bob's address and M as method arguments

2. Bob notices Alice's second transaction before it was mined and quickly sends another transaction that calls the transferFrom() method to transfer N Alice's tokens

somewhere
3. |f Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer N Alice's tokens and will gain an ability to transfer another M tokens

L+. Before Alice notices any irregularities, Bob calls transferFrom() method again, this time to transfer M Alice's tokens.

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://github.com/comitylabs/openzeppelin-contracts/blob/6bd6b76d1156e20e45d1016f355d154141c7e5b9/contracts/token/ERC20/IERC20.sol#L43

Recommendation: The exploit (as described above) is mitigated through use of functions that increase/decrease the allowance relative to its current value, such as increaseAllowance() and
decreaseAllowance(). Furthermore, we recommend that developers of applications dependent on approve() / transferFrom() should keep in mind that they have to set allowance to 0
first and verify if it was used before setting the new value.

QSP-13 Ownership Can Be Renounced

Status: Acknowledged

File(s) affected: contracts/InterestRateModel . sol, contracts/PriceProvidersRepository.sol, contracts/SiloRepository.sol,
contracts/governance/SiloGovernanceToken.sol, contracts/governance/TreasuryVester.sol, contracts/liquidation/LiquidationHelper. sol,
contracts/priceProviders/balancerV2/BalancerV2PriceProvider.sol, contracts/priceProviders/uniswapV3/UniswapV3PriceProvider.sol,
contracts/utils/GuardedLaunch. sol

Description: If the owner renounces their ownership, all ownable contracts will be left without an owner. Consequently, any function guarded by the onl yOwner modifier will no longer be able

to be executed

Recommendation: Double check if this is the intended behavior.

QSP-14 assertandgetdecimals(...) Does Not Throw in Case of a Contract that Is Not Erc20 Compliant

Severity: Medium Risk

Status: Acknowledged

File(s) affected: contracts/lib/TokenHelper.sol

Description: TokenHelper.assertandgetdecimals(. ..)does not revert in case of a contract that is not ERC20 compliant. Please note that the function has been used on multiple

occasions to check if an address is a valid ERC20 contract.

Recommendation: When the call to IERC20Metadata.decimals fails, clearly revert with the correct message otherwise the return value cannot be distinguished between a contract that has

zero decimals and a failing call.

Update: Acknowledged in commit hbe2bddae241fccf3b4b5d69b2d47f/7fhctOeafb2

Automated Analyses

Slither

Slither did not return any significant result.

Adherence to Best Practices

1. the folllwing assignement uint256 totalDepositsCached = collateralOnly ? _state.collateralOnlyDeposits : _state.totalDepositsin

BaseSilo.deposit(...) can be put inside the if/else condition to save gas.

2. SiloSnapshotWrapper implementation inherits from ERC20 when it is not needed. if the contract needs to act as a wrapper, only the required functions can be

implemented.

3. LiquidationHelper.sol: 1.1. The IWrappedNativeToken interface is declared. However, this interface already exists in ./contracts/interfaces/IWrappedNativeToken.sol.
Consider importing it from that file.
1.2. L158: change the require revert message to one more descriptive one.
1.3.checkDebt(. . .) should check input array lengths (similar approach as done in checkSolvency(. . .))

4. In Solvency.sol some functions are not called outside the library (e.g. getBorrowAmounts(. . .), convertAmountsToValues(...) or

getUserCollateralValues(...)). Consider labeling them as private to improve encapsulation.

5. InSiloLens.sol (L298 and L304), and in SiloRepository.sol (L76) a non-documented constant is used (1e18). It seems to be related to

Solvency. PRECISION_ DECIMALS constant. Use it or declare a new named constant in the contract.

6. Gas optimizations: 1.1. Declare array length used in loop condition as variable before for loops. 1.2. In SiloSnapshotWrapper.sol consider declaring siloToken variable

as immutable.
/. The following functions are not called internally. Consider labeling them as external to save gas:

1. TwoStepOwnable.renounceOwnership()

2. TwoStepOwnable.transferOwnership(address)

3. TwoStepOwnable.transferPendingOwnership(address)
4. TwoStepOwnable.acceptOwnership()

5. UniswapV3PriceProvider.getPrice(address)

6. PriceProvidersRepository.getPrice(address)

/. Silo.accrueInterest(address)

8. UniswapV3Swap.pathToBytes(address[],uint24[])

Q. ERC20R.decreaseReceiveAllowance(address,uint256)

10. ERC20R.increaseReceiveAllowance(address,uint256)

Test Results

Test Suite Results

https://github.com/silo-finance/silo-core-v1/compare/4c9e45cd4ae637bbbd2ded914c014da65343430b%E2%80%A64be2bddae241fccf3b45d69b2d47f7f4c40eaf52#diff-c3a9cc00cabce9d4bf9bae9cb69332d0ad173090cf59f380cabf34e3439ec21bR16-R17

Run yarn test
yarn run v1.22.18
warning package.json: License should be a valid SPDX license expression
$ npx hardhat test
hardhat forking OFF
No need to generate any newer typings.
SiloGovernanceToken
when deployed
v/ deployer has 1e9 tokens
———————————————————— evm_revert: 0x1
SiloGovernor
v/ setup (83ms)
testing execution flow
v/ propose() (44ms)
proposed
v/ castVote() (38ms)
voted
v queue() & execute() (491ms)
———————————————————— evm_revert: 0x4
InterestRateModel
v/ #DP
v/ getConfig() (42ms)
v/ setConfig() (43ms)
calculateCurrentInterestRate()
v/ reverts if timestamps are invalid
gas used: 28325
v/ estimateGas() (189ms)
calculateCompoundInterestRate()
v/ reverts if timestamps are invalid
gas used: 33901
v/ estimateGas()
TokenHelper library
v/ expect to support standard string ERC20.symbol() Token ABC (42ms)
v/ expect to support bytes32 ERC20.symbol() Ox546£6b656e20414243000000000000000000000000VVVVVVVVVBYVVVARYVAARA (40ms)
v/ expect return question mark on error (94ms)
LiquidationHelper
- #executelLiquidation
- #checkSolvency
- #checkDebt
- #findPriceProvider
when deployed
- #siloRepository
- #lens
- #quoteToken
- #priceProvidersWithSwapOption
- #priceProvidersWithSwapOption
- #swappers
#siloLiquidationCallback
- throws when called not by silo
- throws when not able to repay all debt eg in case when swap was not enough
- throws when liquidation not profitable
when #silolLiquidationCallback executed
- expect valid values in LiquidationBalance event
- #earnings
BalancerV2PriceProvider
v/ #changeSecondsAgo
v/ #getPoolQuoteLiquidity (43ms)
when deployed
v/ #vault
v/ #secondsAgo is ©
v/ #periodForAvgPrice
#setupAsset
v/ throws on invalid verification (99ms)
v/ #assetSupported returns FALSE before initialization
v/ throws when can't get price for asset (101ms)
when pool is setup
v/ #assetSupported returns TRUE
v/ expect to save state for asset
#changePeriodForAvgPrice
v/ throws when period @
v/ expect to change period
#changeSettings
v/ throws when period 0
v/ expect to change period and secs ago
#priceBufferReady
v/ returns FALSE when pool is NOT initialized with buffer
v returns TRUE when pool is initialized with buffer (193ms)
#getPrice (TWAP calculations)
v/ reverts when asset not initialised
v/ reverts when pool does NOT have full buffer for TWAP calculations (279ms)
v/ return price when pool does have full buffer for TWAP calculations (204ms)
must work for asset with any decimals
v/ returns the price for 18 decimals token (113ms)
v/ returns the price for asset with different decimals eg 6 (107ms)
v/ returns ONE for quote token
#verifyPool
throws on empty asset
throws on invalid pool id (125ms)
throws when invalid pool for asset (168ms)
throws when invalid pool for quote token (68ms)
throws when pool has no quote balance - case 1 [asset, quote] (66ms)
throws when pool has no quote balance - case 2 [quote, asset] (157ms)
throws when pool has no quote balance (150ms)
returns tokens list in original order [asset ,quote] (136ms)
returns tokens list in original order [quote, asset] (72ms)
UniswapV3PriceProvider
when deployed
v #PriceCalculationData
v/ #uniswapV3Factory
v/ does NOT have pool for asset
#setupAsset
v/ #assetSupported returns FALSE
v/ throws when verification failed (99ms)
v throws when pool is not ready to provide prices (240ms)
when asset initialized
v/ #assetSupported returns TRUE
v/ expect to have pool for asset
#changePeriodForAvgPrice
v/ throws on period ©
v/ throws on period greater than or equal timestamp
v/ throws when called NOT by manager
when period set
v/ expect have new period
#changeBlockTime
v throws on blockTime ©
v/ throws on blockTime >= 60
v/ throws when called NOT by manager
when period set
v/ expect have new period
#adjustOracleCardinality
v expect NOT to increase when has required cardinality (39ms)
v/ expect to increase when has required cardinality (111ms)
#hasEnoughObservations
v/ returns TRUE when oldest timestamp is less that required period (146ms)
v/ returns FALSE when oldest timestamp is greater that required period (64ms)
#verifyPool
throws on empty asset address
throws on empty pool address
throws when pool is invalid pool for asset (101ms)
throws when pool for asset is empty address (126ms)
throws when no liquidity (132ms)
returns TRUE when all good (81ms)
#getPrice
v/ throws when asset not initialized
must work for asset with any decimals
v/ returns the price for 18 decimals token (218ms)
v/ returns the price for asset with different decimals eg 6 (201ms)
v/ returns ONE for quote token
PriceProvidersRepository
v/ deployment fails when quote token is not 18 decimals
when deployed
v/ #siloRepository
v/ #quoteToken
v/ #providerList returns empty array
#Manageable
v/ expect manager to be owner by default
v/ #changeManager
#addPriceProvider
v/ throws when called NOT by owner
v/ throws when invalid provider.quoteToken (38ms)
v/ emits event NewPriceProvider (44ms)
when added
v/ throws when try to add again
v/ expect to be registered
v/ #providersCount to be 1
v/ #providerList to return providers
#removePriceProvider
v/ throws when called NOT by owner
v/ throws when not exists
when exists
v/ emits event PriceProviderRemoved
when removed
v/ expect to NOT be registered
v #providersCount to be 1
#setPriceProviderForAsset
v/ throws when called NOT by manager

SNSSSNSSSAS S

SSNS S S

v/ throws when provider not registered
when provider registered
v/ throws when asset not supported
v/ #providersReadyForAsset to be FALSE
v/ emits event PriceProviderForAsset (39ms)
when provider set for asset
v/ expect to be provider for asset
v/ #providersReadyForAsset to be TRUE
#getPrice
v/ returns ONE for quote token
v/ throws when provider reverts (87ms)
v/ returns price (97ms)
Silo unit tests
———————————————————— evm_revert: 0x12bb
v/ emits AssetStatusUpdate when syncing removed bridge assets (125ms)
———————————————————— evm_revert: 0x12bc
v/ expect share tokens are not zero addresses
#getAssets
———————————————————— evm_revert: 0x12cl
v/ returns all synced assets
when new bridge asset is added
———————————————————— evm_revert: 0x12c2
v/ does not return unsynced bridge asset
when Silo is synced
———————————————————— evm_revert: 0x12c3
v/ returns all assets after sync
when bridge asset is removed
———————————————————— evm_revert: 0x12c8
v/ returns all assets *before* sync, including removed asset
when Silo is synced
———————————————————— evm_revert: 0x12cd
v/ returns all assets *after* sync, including removed asset
when removed asset is added back
———————————————————— evm_revert: 0x12df
v/ returns all assets *before* sync, including removed-added asset
when Silo is synced
———————————————————— evm_revert: 0x12f1
v/ returns all assets after sync, including removed-added asset
bridge assets management in the SiloRepository affects silo behavior
#deposit and #borrow are disabled for removed bridge asset
———————————————————— evm_revert: 0x1310
v/ #deposit should fail for the removed bridge asset
———————————————————— evm_revert: 0x132f
v/ #borrow should fail for the removed bridge asset
#deposit and #borrow are available after added removed bridge asset
———————————————————— evm_revert: 0x134b
v/ #deposit should work for the bridge asset added after removal (46ms)
———————————————————— evm_revert: 0x1367
v/ #borrow should work for the bridge asset added after removal (94ms)
#deposit
[#0] allows to deposit all possible assets
———————————————————— evm_revert: 0x1396
v/ [#0] throws on empty asset
———————————————————— evm_revert: 0x13c5
v/ [#0] emits event (148ms)
———————————————————— evm_revert: 0x13cé6
/ [#0] emits event for collateral only (140ms)
———————————————————— evm_revert: 0Ox13ct
v/ [#0] #getLTV is zero when nothing borrowed
test collateralOnly option
[#0] when userA do collateralOnly deposit(collateralAsset)
———————————————————— evm_revert: 0x13d8
v liquidity does not change
———————————————————— evm_revert: 0x13d9
v/ AssetStorage.collateralOnlyDeposits should change
———————————————————— evm_revert: 0x1l3e2
v/ AssetStorage.totalDeposits should not change
when someone borrows collateral
when accruelnterest
———————————————————— evm_revert: 0Ox13eb
/ there should be interest, but not for user A
———————————————————— evm_revert: Ox13f4
v/ user A withdraws collateralOnly without any interest earned (63ms)
#borrow
———————————————————— evm_revert: 0x141d
v/ throws when trying to borrow() collateralOnly deposit
———————————————————— evm_revert: 0x1446
v/ should borrow() using collateralOnly deposit as collateral (354ms)
[#0] when asset deposited by userA
———————————————————— evm_revert: 0x1457
v/ throws when userA wants to borrow collateral asset (279ms)
———————————————————— evm_revert: 0x147a
v/ userB don't have asset and collateral token
———————————————————— evm_revert: 0x1495
v/ #getLTV is still zero because nothing borrowed
———————————————————— evm_revert: 0x149e
v/ expect to have valid total deposits
———————————————————— evm_revert: Ox14a7
v/ #liquidity is equal to deposited value
———————————————————— evm_revert: 0x14bo
v/ balances are correct after deposit
———————————————————— evm_revert: 0x14b9
v/ userA can deposit again (163ms)
———————————————————— evm_revert: 0x14c2
v/ userB can also deposit (164ms)
[#0] #withdrawFor
———————————————————— evm_revert: 0x14d3
v/ throws when done NOT by router
when withdrawFor executed
———————————————————— evm_revert: Ox14e4
v/ depositor has no deposit
———————————————————— evm_revert: 0Oxl4ef
v/ receiver got deposit
[#0] #withdraw
———————————————————— evm_revert: 0x1504
v [#0] throws when withdrawing more collateralOnly then deposited into the silo (165ms)
———————————————————— evm_revert: 0x1519
v [#0] throws when withdrawing more collateral then deposited into the silo (166ms)
———————————————————— evm_revert: 0x152e
v/ [#0] throws when withdraw collateral but such deposits NOT exist (186ms)
———————————————————— evm_revert: 0x1543
v [#0] throws when withdraw collateralOnly but such deposits NOT exist (165ms)
———————————————————— evm_revert: 0x1558
v/ [#@] expect to withdraw MAX (195ms)
[#0] when withdrawn
———————————————————— evm_revert: Ox156d
v/ tokens balances are correct
#withdrawFor
———————————————————— evm_revert: 0x1582
v/ throws when withdrawFor(userA) is done NOT by router
———————————————————— evm_revert: 0x158b
v/ expect to emit event (221ms)
when withdrawn
———————————————————— evm_revert: 0x1596
v/ expect depositor to have no balance
———————————————————— evm_revert: 0Ox15ab
v/ expect receiver got deposit
#calculateCollateralValue
———————————————————— evm_revert: 0x15c@
v/ should be equal original amount when no interests
———————————————————— evm_revert: 0x15d5
v/ value should be greater than original amount when interests are included (50ms)
———————————————————— evm_revert: Ox15de
v/ collateral only should be included into collateral value (187ms)
———————————————————— evm_revert: 0x15e9
v/ should depend on assetPrice (including collateral only) (288ms)
collateral token integration tests
———————————————————— evm_revert: 0Ox15fa
v/ should #mint collateral tokens to userA
———————————————————— evm_revert: 0x1618
v/ should #burn collateral tokens on withdraw (230ms)
#transfer
———————————————————— evm_revert: 0x1621
v/ userA can #transfer collateral tokens (122ms)
when userB deposits other asset
———————————————————— evm_revert: 0x1636
v/ throws when userA transfers collateral to userB who has debt in that asset (213ms)
———————————————————— evm_revert: 0x1641
v/ throws when userA becomes insolvent after transfer (236ms)
[#1] allows to deposit all possible assets
———————————————————— evm_revert: 0x165e
v [#1] throws on empty asset
———————————————————— evm_revert: 0x167b
v/ [#1] emits event (138ms)
———————————————————— evm_revert: 0x167c
v/ [#1] emits event for collateral only (131ms)
———————————————————— evm_revert: 0x1685
v/ [#1] #getLTV is zero when nothing borrowed
test collateralOnly option
[#1] when userA do collateralOnly deposit(collateralAsset)
———————————————————— evm_revert: 0x168e
v/ liquidity does not change
———————————————————— evm_revert: 0x168f
v/ AssetStorage.collateralOnlyDeposits should change
———————————————————— evm_revert: 0x1698
v/ AssetStorage.totalDeposits should not change

when someone borrows collateral
when accruelnterest
———————————————————— evm_revert: 0xlé6al
v/ there should be interest, but not for user A
———————————————————— evm_revert: Oxléaa
v/ user A withdraws collateralOnly without any interest earned (60ms)
#borrow
———————————————————— evm_revert: 0x16d3
v/ throws when trying to borrow() collateralOnly deposit
———————————————————— evm_revert: 0xlé6fc
v/ should borrow() using collateralOnly deposit as collateral (374ms)
[#1] when asset deposited by userA
———————————————————— evm_revert: 0x170d
v/ throws when userA wants to borrow collateral asset (286ms)
———————————————————— evm_revert: 0x1730
v/ userB don't have asset and collateral token
———————————————————— evm_revert: 0x174b
v/ #getLTV is still zero because nothing borrowed
———————————————————— evm_revert: 0x1754
v/ expect to have valid total deposits
———————————————————— evm_revert: 0x175d
v/ #liquidity is equal to deposited value
———————————————————— evm_revert: 0x1766
v/ balances are correct after deposit
———————————————————— evm_revert: Ox176f
v/ userA can deposit again (163ms)
———————————————————— evm_revert: 0x1778
v/ userB can also deposit (175ms)
[#1] #withdrawFor
———————————————————— evm_revert: 0x1789
v/ throws when done NOT by router
when withdrawFor executed
———————————————————— evm_revert: 0x179a
v/ depositor has no deposit
———————————————————— evm_revert: 0x17a5
v/ receiver got deposit
[#1] #withdraw
———————————————————— evm_revert: 0x17ba
v [#1] throws when withdrawing more collateralOnly then deposited into the silo (171ms)
———————————————————— evm_revert: Ox17ct
v/ [#1] throws when withdrawing more collateral then deposited into the silo (176ms)
———————————————————— evm_revert: 0x1l7e4
v/ [#1] throws when withdraw collateral but such deposits NOT exist (179ms)
———————————————————— evm_revert: Ox17£f9
v/ [#1] throws when withdraw collateralOnly but such deposits NOT exist (174ms)
———————————————————— evm_revert: 0x180e
v/ [#1] expect to withdraw MAX (195ms)
[#1] when withdrawn
———————————————————— evm_revert: 0x1823
v/ tokens balances are correct
#withdrawFor
———————————————————— evm_revert: 0x1838
v/ throws when withdrawFor(userA) is done NOT by router
———————————————————— evm_revert: 0x1841
v/ expect to emit event (197ms)
when withdrawn
———————————————————— evm_revert: 0x184c
v/ expect depositor to have no balance
———————————————————— evm_revert: 0x1861
v/ expect receiver got deposit
#calculateCollateralValue
———————————————————— evm_revert: 0x1876
v/ should be equal original amount when no interests
———————————————————— evm_revert: 0x188b
v/ value should be greater than original amount when interests are included (46ms)
———————————————————— evm_revert: 0x1894
v/ collateral only should be included into collateral value (159ms)
———————————————————— evm_revert: Ox189f
v/ should depend on assetPrice (including collateral only) (272ms)
collateral token integration tests
———————————————————— evm_revert: 0x18bo
v/ should #mint collateral tokens to userA
———————————————————— evm_revert: Ox18ce
v/ should #burn collateral tokens on withdraw (205ms)
#transfer
———————————————————— evm_revert: 0x18d7
v/ userA can #transfer collateral tokens (129ms)
when userB deposits other asset
———————————————————— evm_revert: 0x18ec
v/ throws when userA transfers collateral to userB who has debt in that asset (206ms)
———————————————————— evm_revert: Ox18f7
v/ throws when userA becomes insolvent after transfer (233ms)
when guarded launch is ON
throws on limitedMaxLiquidity for every asset
———————————————————— evm_revert: 0x1914
v/ [@] expect to fail for asset (188ms)
———————————————————— evm_revert: 0x1931
v/ [0] expect to fail for asset (collateralOnly) (177ms)
———————————————————— evm_revert: 0x193c
v/ [1] expect to fail for asset (191ms)
———————————————————— evm_revert: 0x1947
v/ [1] expect to fail for asset (collateralOnly) (187ms)
#deposit with limitedMaxLiquidity in 2 steps should fail
fails for every asset
———————————————————— evm_revert: 0x1952
v/ [0] expect to fail for asset (227ms)
———————————————————— evm_revert: 0x195d
v/ [1] expect to fail for asset (231ms)
depositFor(userB)
depositFor(userB) all possible assets
———————————————————— evm_revert: 0x1968
v/ [0] router can depositFor(userB) asset (177ms)
———————————————————— evm_revert: 0x1973
v/ [0] anyone can depositFor(userB) asset (162ms)
———————————————————— evm_revert: 0x197e
v/ [1] router can depositFor(userB) asset (198ms)
———————————————————— evm_revert: 0x1987
v/ [1] anyone can depositFor(userB) asset (169ms)
when userA made two types of collateral deposits
———————————————————— evm_revert: 0x1992
v/ userA has two types of deposits
when userA (with two types of deposit) borrows
#flashLiquidate when userA is solvent
———————————————————— evm_revert: 0x199b
v/ expect to NOT liquidate(userA) with two types of deposits as collateral (87ms)
#flashLiquidate when userA became insolvent
———————————————————— evm_revert: ©Oxl19ac
v/ will update the silo state during liquidation (203ms)
———————————————————— evm_revert: 0x19cft
v/ fail to liquidate(userA) when repay amount not enough (178ms)
when userA liquidated
———————————————————— evm_revert: 0x19f6
v/ expect tx to emit Liquidate events
———————————————————— evm_revert: Oxlald
v/ expect tx to emit Transfer events
———————————————————— evm_revert: 0xla44
v/ expect to have no debt (100ms)
———————————————————— evm_revert: Oxlaébb
v/ expect to decrease total deposit
———————————————————— evm_revert: 0x1a92
v/ expect to send both types of deposits to liquidator on liquidate(userA)
———————————————————— evm_revert: Oxlab9
v/ expect view to returns valid assets
———————————————————— evm_revert: Oxlae0
v/ expect view to returns valid collaterals data
———————————————————— evm_revert: Ox1bo7
v/ expect view to returns valid amounts to repay
#borrow
[0] with all assets
———————————————————— evm_revert: Oxlb2e
v/ [0] expect to throw when nothing to borrow (175ms)
———————————————————— evm_revert: Ox1b55
v throws when userB wants to borrow more that silo has (285ms)
———————————————————— evm_revert: 0Ox1b60
v/ expect to emit event (482ms)
[0] when user B borrow
———————————————————— evm_revert: 0x1b71
v/ expect valid state of tokens (104ms)
[1] with all assets
———————————————————— evm_revert: 0Ox1b8c
v/ [1] expect to throw when nothing to borrow (181ms)
———————————————————— evm_revert: Oxlba7
v/ throws when userB wants to borrow more that silo has (294ms)
———————————————————— evm_revert: Oxlbb2
v/ expect to emit event (462ms)
[1] when user B borrow
———————————————————— evm_revert: Oxlbc3
v/ expect valid state of tokens (105ms)
#deposit and #borrow for every pair of assets
[0] when user A deposits currentAsset
[0] when user B deposit other asset as collateral
———————————————————— evm_revert: Oxlbde
v/ silo shares are right before borrow
———————————————————— evm_revert: Ox1bf9
v/ userB has right LTV after #borrow (329ms)
test maximumLTV

when there is enough deposit
———————————————————— evm_revert: OxlcOa
v/ throws when userB wants to borrow more that 100% (maximumLTV) (366ms)
———————————————————— evm_revert: Oxlc27
v/ userB can borrow maximumLTV and stay solvent (125ms)
borrowFor(userA)
———————————————————— evm_revert: Oxlcba
v/ router can borrowFor(userB) (265ms)
———————————————————— evm_revert: Oxlc7b
v/ throws when borrowFor() is done NOT by router
when userB borrows currentAsset
———————————————————— evm_revert: Oxlcad
v/ tokens balances are correct
———————————————————— evm_revert: Oxlcbb
v/ #calculateBorrowValue
———————————————————— evm_revert: Oxlcdé
v/ #getBorrowAmount
———————————————————— evm_revert: Oxlcfl
v/ throws when userB wants to deposit
———————————————————— evm_revert: ©Oxld@c
v/ #withdraw (235ms)
debt token integration tests
———————————————————— evm_revert: 0x1d27
v/ should #mint debt token to userB
———————————————————— evm_revert: 0x1d42
v/ userB can #transfer debt (902ms)
should #burn debt token on repay
———————————————————— evm_revert: 0x1d5d
v/ should #burn all debt when repay amountToBorrow and no interest apply (50ms)
———————————————————— evm_revert: 0x1d8e
v/ should NOT #burn all debt when repay amount without interest (105ms)
———————————————————— evm_revert: Ox1da%9
v/ should #burn all debt token on full repay (77ms)
#transfer
———————————————————— evm_revert: 0x1dc8
v/ throws when userA did not allow for transfer (168ms)
———————————————————— evm_revert: Oxlde3
v/ throws when userB transfers debt to someone who has collateral in that asset (323ms)
———————————————————— evm_revert: 0x1e08
v/ throws when userA become insolvent after debt transfer from userB (64ms)
———————————————————— evm_revert: Oxle37
v/ throws when amount exceeds allowance (182ms)
when userB borrows again
———————————————————— evm_revert: Oxle56
v/ #liquidity is zero
———————————————————— evm_revert: Oxle7d
v/ lens borrow data are correct
———————————————————— evm_revert: Oxleb2
v/ tokens balances are correct
———————————————————— evm_revert: Oxlee7
v/ there are no interests because no time passed
when a week passed interests should appear
when all interests goes to the protocol
———————————————————— evm_revert: Oxlflc
v #harvestProtocolFees (121ms)
———————————————————— evm_revert: Ox1f51
v userA do not have interests
when protocol fees is 0%
———————————————————— evm_revert: 0x1f74
v/ userA got interests
———————————————————— evm_revert: Ox1£95
v/ accruelnterest() increases the total borrowAmount and deposits
———————————————————— evm_revert: Ox1fb4
v/ total deposit increased by protocol interests
#repay
———————————————————— evm_revert: 0x1£d3
v/ expect to repay all using exact amount (175ms)
———————————————————— evm_revert: Ox1ff2
v/ expect to repay all using max uint256 amount (181ms)
———————————————————— evm_revert: 0x200d
v/ expect to repay all providing higher amount than actual debt (179ms)
———————————————————— evm_revert: 0x2028
v/ expect to repay part of debt (111ms)
#repayFor
———————————————————— evm_revert: 0x2043
v/ anyone can repayFor(userB) if it is solvent (215ms)
when userB becomes insolvent
———————————————————— evm_revert: 0x205e
v/ anyone can repayFor(userB) if it is insolvent (175ms)
#flashLiquidation
when flashLiquidation is done on solvent userB
———————————————————— evm_revert: 0x2079
v/ expect to not change assets, debt and collateral tokens balances for userB
———————————————————— evm_revert: 0x2096
v/ expect totalBorrowAmount, totalDeposits of assets should not change
when userB is NOT solvent
———————————————————— evm_revert: 0x20b3
v/ ltv > liquidationThreshold
when flashLiquidation executed (interest ON)
———————————————————— evm_revert: 0x20d0
v/ expect protocol got liquidation fees
———————————————————— evm_revert: 0x20ed
v/ expect userB to be solvent, there is no debt (102ms)
———————————————————— evm_revert: 0x2112
v/ expect userB to loose his collateral
———————————————————— evm_revert: Ox2137
v/ expect userB to have borrowed asset
- expect liquidatorHelper to have some remaining quote token
———————————————————— evm_revert: 0x215c
v/ expect userA earned fees on borrowed asset
———————————————————— evm_revert: 0x2181
v/ expect interests to be applied
[1] when user A deposits currentAsset
[1] when user B deposit other asset as collateral
———————————————————— evm_revert: 0Ox21la6
v/ silo shares are right before borrow
———————————————————— evm_revert: 0Ox2lcb
v/ userB has right LTV after #borrow (336ms)
test maximumLTV
when there is enough deposit
———————————————————— evm_revert: 0x21ldc
v/ throws when userB wants to borrow more that 100% (maximumLTV) (361ms)
———————————————————— evm_revert: Ox21f9
v/ userB can borrow maximumLTV and stay solvent (133ms)
borrowFor(userA)
———————————————————— evm_revert: Ox222c
v/ router can borrowFor(userB) (272ms)
———————————————————— evm_revert: 0x224d
v/ throws when borrowFor() is done NOT by router
when userB borrows currentAsset
———————————————————— evm_revert: Ox2272
v/ tokens balances are correct (39ms)
———————————————————— evm_revert: 0x228d
v/ #calculateBorrowValue
———————————————————— evm_revert: 0x22a8
v/ #getBorrowAmount
———————————————————— evm_revert: 0x22c3
v/ throws when userB wants to deposit
———————————————————— evm_revert: 0Ox22de
v/ #withdraw (235ms)
debt token integration tests
———————————————————— evm_revert: Ox22f9
v/ should #mint debt token to userB
———————————————————— evm_revert: 0x2314
v/ userB can #transfer debt (937ms)
should #burn debt token on repay
———————————————————— evm_revert: Ox232f
v/ should #burn all debt when repay amountToBorrow and no interest apply (51ms)
———————————————————— evm_revert: 0x2360
v/ should NOT #burn all debt when repay amount without interest (100ms)
———————————————————— evm_revert: 0x237b
v/ should #burn all debt token on full repay (71ms)
#transfer
———————————————————— evm_revert: Ox239a
v/ throws when userA did not allow for transfer (157ms)
———————————————————— evm_revert: 0Ox23b5
v/ throws when userB transfers debt to someone who has collateral in that asset (320ms)
———————————————————— evm_revert: 0x23da
v/ throws when userA become insolvent after debt transfer from userB (62ms)
———————————————————— evm_revert: 0x2409
v/ throws when amount exceeds allowance (183ms)
when userB borrows again
———————————————————— evm_revert: Ox2428
v/ #liquidity is zero
———————————————————— evm_revert: 0x244f
v/ lens borrow data are correct
———————————————————— evm_revert: 0x2484
v/ tokens balances are correct
———————————————————— evm_revert: 0x24b9
v/ there are no interests because no time passed
when a week passed interests should appear
when all interests goes to the protocol
———————————————————— evm_revert: 0Ox24ee
v #harvestProtocolFees (123ms)
———————————————————— evm_revert: 0x2523
v/ userA do not have interests

when protocol fees is 0%
———————————————————— evm_revert: 0x2546
v/ userA got interests
———————————————————— evm_revert: 0x2567
v/ accrueInterest() increases the total borrowAmount and deposits
———————————————————— evm_revert: 0x2586
v/ total deposit increased by protocol interests
#repay
———————————————————— evm_revert: 0x25a5
v/ expect to repay all using exact amount (177ms)
———————————————————— evm_revert: 0x25c4
v/ expect to repay all using max uint256 amount (175ms)
———————————————————— evm_revert: 0x25df
v/ expect to repay all providing higher amount than actual debt (173ms)
———————————————————— evm_revert: 0Ox25fa
v/ expect to repay part of debt (111ms)
#repayFor
———————————————————— evm_revert: 0x2615
v/ anyone can repayFor(userB) if it is solvent (236ms)
when userB becomes insolvent
———————————————————— evm_revert: 0x2630
v/ anyone can repayFor(userB) if it is insolvent (180ms)
#flashLiquidation
when flashLiquidation is done on solvent userB
———————————————————— evm_revert: 0x264b
v/ expect to not change assets, debt and collateral tokens balances for userB
———————————————————— evm_revert: 0x2668
v/ expect totalBorrowAmount, totalDeposits of assets should not change
when userB is NOT solvent
———————————————————— evm_revert: 0x2685
v/ ltv > liquidationThreshold
when flashLiquidation executed (interest ON)
———————————————————— evm_revert: 0x26a2
v/ expect protocol got liquidation fees
———————————————————— evm_revert: 0Ox26bf
v/ expect userB to be solvent, there is no debt (101ms)
———————————————————— evm_revert: Ox26e4
v/ expect userB to loose his collateral
———————————————————— evm_revert: 0x2709
v/ expect userB to have borrowed asset
- expect liquidatorHelper to have some remaining quote token
———————————————————— evm_revert: 0x272e
v/ expect userA earned fees on borrowed asset
———————————————————— evm_revert: 0x2753
v/ expect interests to be applied
———————————————————— evm_revert: 0x127c
SiloFactory
v/ #siloFactoryPing
SiloLens
#protocolFees
v/ expect to return correct protocolFees
#lensPing
v/ expect to return correct lensPing
#getModel
/ expect to return correct getModel
when user deposit and borrow
#liquidity
#totalDeposits
#collateralOnlyDeposits
#totalBorrowAmount
#borrowShare
#totalBorrowShare
#getBorrowAmount (47ms)
#collateralBalanceOfUnderlying (5@ms)
#balanceOfUnderlying (78ms)
#debtBalanceOfUnderlying
#calculateCollateralValue (81ms)
#calculateBorrowValue (68ms)
#totalDepositsWithInterest (46ms)
#totalBorrowAmountWithInterest (38ms)
#getUtilization
#borrowAPY
#depositAPY
v/ expect to return @ when no deposit (131ms)
v/ expect to calculate APY (86ms)
LTV
v/ #getUserLTV (91ms)
v/ #getUserMaximumLTV (64ms)
v/ #getUserLiquidationThreshold (65ms)
#hasPosition
v/ expect to return FALSE for address(@) (158ms)
v/ expect to return FALSE if user not using Silo (329ms)
returns TRUE when user has at least one position

SNSNSSSSSSSSSNSNSNASASNS

v/ [0] expect to return TRUE for 1,0,0,0,0,0 (152ms)
v/ [1] expect to return TRUE for 0,1,0,0,0,0 (197ms)
v/ [2] expect to return TRUE for 0,0,1,0,0,0 (205ms)
v/ [3] expect to return TRUE for 0,0,0,1,0,0 (213ms)
v/ [4] expect to return TRUE for 0,0,0,0,1,0 (218ms)
v/ [5] expect to return TRUE for 0,0,0,0,0,1 (211ms)
SiloRepository
v/ #defaultAssetConfig returns default values (62ms)
v/ isSilo()

v/ getMaximumLTV()
v/ getlLiquidationThreshold()
when deployed

v/ #bridgeAssets are setup
v/ #siloLatestVersion is 1st version
v/ #siloDefaultVersion is 1st version
v/ expect siloFactory(@) returns empty address
v/ expect silo factory is not empty for the default version
v/ #siloFactory returns address
v/ fees are 0
v/ #siloRepositoryPing
#setFees

throws when any fee is >= than 100%
v/ check for entryFee
v/ check for protocolShareFee
v/ check for protocolLiquidationFee
when fees updated
v/ expect to saved fees
#setNotificationReceiver
v/ expect to not have NotificationReceiver set
v/ throw when called NOT by owner
with NotificationReceiver set
v/ expect to have NotificationReceiver set
#setAssetConfig
throws when ltv is zero
throws when ltv == liquidationThreshold
throws when ltv > liquidationThreshold
throws when liquidationThreshold >= 100%
throws when silo empty
throws on empty interestRateModel
throws when invalid interestRateModel
throws when asset empty
emits AssetConfigUpdate event (41ms)
when config set
v/ expect to have valid values in storage
setDefaultInterestRateModel ()
v/ expect interest rate model is set in default config
v/ expect default interest rate model is set for random silo
#setDefaul tMaximumLTV
v/ expect to set new MaximumLTV
v/ throws when ltv is zero
v/ throws when ltv == liquidationThreshold
v/ throws when ltv > liquidationThreshold
#setDefaultLiquidationThreshold
v/ expect to set new value
v/ throws when ltv == liquidationThreshold
v/ throws when ltv > liquidationThreshold
v/ throws when liquidationThreshold >= 100%
#setPriceProvidersRepository
v/ expect to set repo address (88ms)
v/ throws on invalid address
v/ throws on empty address
#setRouter
v/ expect to set repo address
v/ throws on invalid address
v/ throws on empty address
#addBridgeAsset
v/ expect to revert when called NOT by owner
v/ expect to revert when price provider is not ready for asset
v/ expect to revert when empty asset
v/ emits BridgePool event when silo already exists for asset (228ms)
when silo for newBridgeAsset already exists
v/ expect to add bridge asset and set bridge pool (9@ms)
when BridgePool exists
when regular Silo exists for asset X
v/ throws when adding asset X as a bridge
when new bridge asset added
v/ expect to have newAsset in bridgeAssets
v/ expect to revert when try to add same asset again
#removeBridgeAsset
v/ expect to revert when called NOT by owner
v/ expect to revert when removing main bridge asset
v/ expect to revert when try to remove empty asset
with 3 bridge assets

SNSSSSASNSSS

v/ expect to revert when asset does not exists
when removed
v/ asset not exists as bridge asset
v/ asset exists as removed asset
when silo for removing asset exists (it is bridge pool)
v/ expect to reset bridge pool on removal asset for existing silo(asset) (86ms)
v/ does not reset bridgePool on removal asset that is not main bridgePool asset (94ms)
#newSilo
v/ throws when price provider not setup (40ms)
v/ throws if silo version does not exist (158ms)
v/ expect to create silo using default version (@) (174ms)
v emits BridgePool when created silo for bridge asset (150ms)
when Silo created
v/ expect silo(asset) returns silo address
v/ expect siloReverse(siloAddress) returns asset
v/ expect isSilo(siloAddress) returns true
with new silo version (not default)
v/ expect to create silo for OLD version (133ms)
v/ expect to create silo for NEW version (187ms)
#replaceSilo
v/ expect to throw when there is nothing to replace (silo not exists)
when silo for asset exists
v/ expect to throw when called not by owner
when replaced
v/ expect to replace silo
v/ expect siloReverse(newSilo) returns asset
v/ expect siloReverse(oldSilo) still returns asset
v/ expect isSilo(oldSilo) returns true
v/ expect isSilo(newSilo) returns true
#registerSiloVersion
v/ throws when called NOT by owner
v/ throws when empty factory
v/ throws when invalid factory
v/ expect to emit events (73ms)
when silo version registered as NOT default version
v/ siloDefaultVersion NOT change
when silo version registered as default version
v siloVersion is valid
v/ expect siloFactory(l) returns old version
v/ expect siloFactory(2) returns new version
#unregisterSiloVersion
v/ throws when NOT and owner
v/ throws when unregistering default version
v/ throws when unregistering nonexistent version
v/ emits event (92ms)
#setDefaultSiloVersion
v/ throw when NOT and owner
v throws when there is no factory for selected version
v/ expect to emit SiloDefaultVersion
when default version set
v/ expect to have valid version
#ensureCanCreateSiloFor
with just one bridge asset
v/ throws when asset is a bridge
with many bridge assets
v/ throws when silo already exists for asset (135ms)
v/ allows to create when asset is a bridge asset
v/ allows to create when asset is NOT a bridge asset
when asset is a bridge
v/ throws when bridge pool already exists (154ms)
v/ throws when bridge pool for other bridge asset already exists (145ms)
SiloRouter unit tests
when deployed
v/ wrappedNativeToken is set
eth refunds
v/ refunds remaining eth if the user sent eth
v/ does not refund remaining eth if the user did not sent eth (4@ms)
execute single action
v Action.Deposit (222ms)
v/ Action.Withdraw (156ms)
v Action.Borrow (153ms)
v Action.Repay (157ms)
using ETH
Action.Deposit ETH
v/ expect to have correct ETH balance
Action.Withdraw ETH
v/ expect to have correct ETH balance
Action.Borrow ETH
v/ expect to have correct ETH balance
Action.Repay ETH
v/ expect to have correct ETH balance
execute bundle
v/ Action.Deposit => Action.Borrow (359ms)
v/ Action.Withdraw => Action.Action.Repay (355ms)
v Action.Deposit => Action.Borrow => Action.Withdraw => Action.Withdraw (648ms)
v/ Action.Deposit => Action.Deposit => Action.Deposit => Action.Borrow (784ms)
using ETH
Action.Deposit ETH => Action.Deposit ETH
v/ expect to have correct ETH balance
TokensFactory
#factory should create all types of tokens
#createShareCollateralToken
v/ creates token
v/ silo is token deployer
#createShareDebtToken
v/ creates token
v silo is token deployer
GuardedLaunch
after deployment
v/ #globalToggle
v/ #defaultMaxLiquidity
#getMaxSiloDepositsValue
after deployment
Test case ©
v/ expect correct max deposits
Test case 1
v/ expect correct max deposits
Test case 2
v/ expect correct max deposits
Test case 3
v/ expect correct max deposits
#toggleLimitedMaxLiquidity
Test case ©
v/ expects no limit
Test case 1
v/ expects no limit
Test case 2
v/ expects no limit
Test case 3
v/ expects no limit
#setDefaultSiloMaxDepositsLimit
Test case @
v/ expects new deafult limit
Test case 1
v/ expects new deafult limit
Test case 2
v/ expects new deafult limit
Test case 3
v/ expects new deafult limit
#setSiloMaxDepositsLimit
Test case @
v/ expects new limit for a Silo
Test case 1
/ expects new limit for a Silo
Test case 2
v/ expects new limit for a Silo
Test case 3
/ expects new limit for a Silo
#isSiloPaused
after deployment
Test case ©
v/ expects Silo to be unpaused
Test case 1
v/ expects Silo to be unpaused
Test case 2
v/ expects Silo to be unpaused
Test case 3
v/ expects Silo to be unpaused
#setGlobalPause
Test case @
v/ expects Silo to be paused
Test case 1
v/ expects Silo to be paused
Test case 2
v/ expects Silo to be paused
Test case 3
v/ expects Silo to be paused
global unpause Silo
Test case @
v/ expects Silo to be unpaused
Test case 1
v/ expects Silo to be unpaused
Test case 2
v/ expects Silo to be unpaused
Test case 3
v/ expects Silo to be unpaused

#setSiloPause
pause Silo
Test case @
v/ expects Silo to be paused
Test case 1
v/ expects Silo to be paused
Test case 2
v/ expects Silo to be paused
Test case 3
v/ expects Silo to be paused
unpause Silo
Test case ©
v/ expects Silo to be unpaused
Test case 1
v/ expects Silo to be unpaused
Test case 2
v/ expects Silo to be unpaused
Test case 3
v/ expects Silo to be unpaused
pause Asset
Test case ©
v/ expects asset to be paused
Test case 1
v/ expects asset to be paused
Test case 2
v/ expects asset to be paused
Test case 3
v/ expects asset to be paused
unpause Asset
Test case @
v/ expects Asset to be unpaused
Test case 1
v/ expects Asset to be unpaused
Test case 2
v/ expects Asset to be unpaused
Test case 3
v/ expects Asset to be unpaused
ShareCollateralToken
#mint
v/ expect balance
with NotificationReceiver set
v/ expect balance
#burn
v/ expect balance
#transfer
successful transfer
v/ expect correct balances
throws when
v userA transfers collateral to someone who has debt in that asset (61ms)
v/ userA become unsolvent after transfer (64ms)
#transferFrom
successful trasnfer
with misconfigured NotificationReceiver
v/ expect correct balances
with properly configured NotificationReceiver
v/ expect NotificationSent event with value true (204ms)
throws when
v/ not enough allowance from userA (91ms)
v/ userC transfers userAs asset deposit to userB who has debt in that asset (63ms)
v userA become unsolvent after transferFrom to userB (67ms)
ShareDebtToken
#mint
v/ expect balance
with NotificationReceiver set
v/ expect balance
#burn
v/ expect balance
#transfer debt
v/ expect correct balances
throws when
v/ recipient did not allow for transfer (65ms)
v/ userA transfers debt to someone who has collateral in that asset (134ms)
v userB become unsolvent after debt transfer from userA (201ms)
#transferFrom of debt
v/ expect correct balances
throws when
v/ not enough allowance from userA to userC (who transfers) (95ms)
v not enough receive allowance from userB to userA (71ms)
v/ userC transfers userAs debt to userB who has collateral in that asset (150ms)
v/ userB become insolvent after transferFrom debt from userA (174ms)
#setReceiveApproval
v/ expect to set receive approval from random address
v/ throws when receive approval sender is 0x0
#decreaseReceiveAllowance
v/ expect to decrease allowance by 25%
v/ reverts if decreasing receive allowance results in an underflow
#increaseReceiveAllowance
v/ expect to increase allowance x3
v/ reverts if increasing receive allowance results in an overflow
ShareToken
when share token is ShareCollateralToken
when deployed
v/ expect to have name set
v/ expect to have symbol set
v/ expect to have silo set
v/ expect to have asset set
#mint
v/ throws when mint by NOT an owner
v/ owner should mint tokens (39ms)
v/ should emit event on mint
#burn
v/ throws when burn NOT by owner
v/ owner should burn tokens (53ms)
v/ should emit event on burn
when share token is ShareDebtToken
when deployed
v/ expect to have name set
v/ expect to have symbol set
v/ expect to have silo set
v/ expect to have asset set
#mint
v/ throws when mint by NOT an owner
v/ owner should mint tokens (40ms)
v/ should emit event on mint
#burn
v/ throws when burn NOT by owner
v/ owner should burn tokens (50ms)
v/ should emit event on burn
4764 passing (6m)
17 pending
Done in 406.79s.

Code Coverage

Initial Audit:

Quantstamp usually recommends developers increase the branch coverage to 90% and above before a project goes live, in order to avoid hidden functional bugs that might
not be easy to spot during the development phase. For branch code coverage, the current targeted files by the audit achieve a lower score that can be improved further.
Reaudit update: Coverage could not be generated due to errors.

Final Reaudit: The final repository does not contain a test folder.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 96.41 83.18 94 .85 96.52
BaseSilo.sol 99.46 81.67 100 99.46 395

Error.sol 100 100 100 100
InterestRateModel.sol 96.55 92.86 91.67 96.43 162,230

PriceProvidersRepository.sol 92.86 81.82 84.62 88.89 38,339,106

File % Stmts % Branch % Funcs % Lines Uncovered Lines

Silo.sol 100 100 100 100
SiloFactory.sol 25 0 50 25 18,20,21
SiloLens.sol 92.19 33.33 96.15 95.16 311,312,314
SiloRepository.sol 96.83 90.7 96.77 96.72 117,122,123,232
SiloRouter. sol 95 75 85.71 94 .59 80,118
TokensFactory.sol 100 100 100 100
contracts/governance/ 21.82 5.33 48 .15 22.22
SiloGovernanceToken.sol 60 100 60 60 27,51
SiloGovernor.sol 72.73 100 75 72.73 113,141,151
SiloSnapshotWrapper. sol %) %] %] %] .. 42,45,52,57
TreasuryVester.sol 3.7 4.17 25 3.85 .. 6,98,99,102
contracts/interfaces/ 100 100 100 100
IBaseSilo.sol 100 100 100 100
TERC20R. sol 100 100 100 100
IFlashLiquidationReceiver.sol 100 100 100 100
IGuardedLaunch.sol 100 100 100 100
IInterestRateModel . sol 100 100 100 100
INotificationReceiver. sol 100 100 100 100
IPriceProvider.sol 100 100 100 100
IPriceProvidersRepository.sol 100 100 100 100
IShareToken.sol 100 100 100 100
ISilo.sol 100 100 100 100
ISiloFactory.sol 100 100 100 100
ISiloRepository.sol 100 100 100 100
ISwapper.sol 100 100 100 100
ITokensFactory.sol 100 100 100 100
IWrappedNativeToken. sol 100 100 100 100
contracts/lib/ 95.8 90.32 100 96.45
EasyMath.sol 100 100 100 100
ModelStats.sol 66.67 50 100 100
PRBMathCommon. sol 100 98.51 100 100
PRBMathSD59x18. sol 61.54 40 100 66.67 42,72,73,77,78
Ping.sol 90 83.33 100 100
Solvency.sol 94 .37 71.43 100 96.97 317,345
TokenSymbol . sol 100 100 100 100
contracts/liquidation/ 77 .19 58.33 70.37 79.28
BalancerV2Swap. sol 72.22 50 71.43 72.22 37,38,75,79,83
LiquidationHelper.sol 80.77 60.71 75 84 .. ,93,150,187
UniswapV3Swap.sol 66.67 50 62.5 66.67 .. 5,66,98,109
contracts/mock/ 75 66.67 70.59 75.68
Forwarder.sol 100 100 100 100
MockERC20. sol 80 100 75 75 16
MockLiquidationHelper. sol 100 100 100 100
MockPriceFetchersRepository.sol %) %) %) %) 15,20,24,28
MockSiloGovernor.sol 100 100 100 100

TestTokenSymbol . sol 100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered Lines
contracts/priceProviders/ 80 75 66.67 83.33
PriceProvider.sol 80 75 66.67 83.33 37
contracts/priceProviders/balancerV2/ 96. 36 85.71 100 97 .87
BalancerV2PriceProvider.sol 96. 36 85.71 100 97.87 213
contracts/priceProviders/uniswapV3/ 78.46 66.67 65 80.65
TwoStepOwnable. sol 26.67 4] 22.22 25 ... 68,69,76,83
UniswapV3PriceProvider.sol 94 80 100 100
contracts/utils/ 89.66 81.82 87.8 90.22
ERC20R. sol 100 75 100 100
GuardedLaunch. sol 100 100 100 100
Managable.sol 100 62.5 100 100
ShareCollateralToken.sol 100 100 100 100
ShareDebtToken.sol 100 100 100 100
ShareToken. sol 100 100 100 100
TwoStepOwnable. sol 40 33.33 4444 43.75 .. 716,77,78,92
ALl files 89.09 78.64 84.84 89.32

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

95998c/708ca’/30adl/7a/740d12580e6e8499248el136e2ae/e040bca801b/ca89/ ./contracts/BaseSilo.sol
5af579cabbb8f/elaf42/d4ee34ct60ad45b69cab55blcc/77/71£fb8504b1df/53 . /contracts/SiloLens.sol
6b77£13f4cf726a1b83e81e41d1d453587/86e4£956cfel9d/c3acdd91£2/76888 ./contracts/Error.sol
/e0d/b9543ceal34/cell6a5202bd5904b33906bdlcdaf2503££5448e8825¢c13/7 . /contracts/InterestRateModel.sol
al/12d2f20bad4c2ddf6573bc4a9cffSbeb6lad4aae420000a/c/9b931ae2a4fd3 . /contracts/SiloFactory.sol
1d36412c302e23311ba93/78£2a999p18£fc5del68151493¢cb6b94032e98b5322b . /contracts/TokensFactory.sol
/fad817378ed28945217a1/8d4bc/7/7/bed8c8935e221ec399fbbl6ca9146/7123¢c ./contracts/PriceProvidersRepository.sol
63/bfa@abl537140aa58/9bcB31faae/cb5578fccffbe/0040eb/6bab3afefb/ ./contracts/SiloRepository.sol
ea5263b309b5a552a790e66bc2119a0826dc62dc18598440192bec@60580bf5b . /contracts/Silo.sol
d54d31b0b2438b557£18bed1alb57b2d1184674b771102b5ce7c1d76b618da34 ./contracts/SiloRouter.sol
de98a/7a26587eea251fd8bef24a52bac3e3/73e2859d542bd14eda9/984af2fb3 ./contracts/interfaces/IPriceProvider.sol
04/b4/35a6a6cc60@ablddbcae//94c9444d87ad5687/bec/18elaBllblae844606d ./contracts/interfaces/ITokensFactory.sol
17a30a4284973cfece@b6b03591188815bb66b92¢c/9fbleb6359f£f8fcf313d5bl . /contracts/interfaces/ISiloFactory.sol
14b3c6£52d35cal8b2f1ff876c5e/4d15e5ba/b/0e0@1d605baatfbdbl8a42386a ./contracts/interfaces/IBaseSilo.sol
lceea4102e8104d2a2cebf2cbee’33aae2f80d1£2100b2£f44d50ed/49£f00834ec ./contracts/interfaces/ISwapper.sol
6680d6110eee28/fec4d3dc/b0972adf3937e0866££509abda3d31d3£fe868bb3 . /contracts/interfaces/INotificationReceiver.sol
27524d73£18a0ab38£8909aae9¢c53b970£915199b4£d0£02£5c9d5263551c201 . /contracts/interfaces/ISilo.sol
5a7d80227dddb4ab61fcc4207£842ce63edd93eall11306/7/299ea/233a4fc22ae/ ./contracts/interfaces/IERC20R. sol
944b0195011£f61cefb63ac572f£50c8£8d1bl1222fcb3cb6be’39b16d6926ccfalf? . /contracts/interfaces/IShareToken.sol
/£2£23cc49df2cdab649d/£95b487de6090df366b91279abf8£f04/d4b57a38dc/ . /contracts/interfaces/IWrappedNativeToken. sol
b2d/7a/77a5f0bcc5fcf8b3ebB@6a5995ae/72076bcb26a/4e3174640£91d72896f1 . /contracts/interfaces/IPriceProvidersRepository.sol
1596843103d3831905ea3ceadd92e9//cff6602b3/cd3af6a8adedfb3651da5f ./contracts/interfaces/ISiloRepository.sol
Ob7£5150822daf384£52e3223484af1bc9da2d2139ffa31e8f6c4be447474734 . /contracts/interfaces/IGuardedLaunch.sol
3d9ac9cea94/c2e505f5c72688fdcbadldffcf8ed9aa4fa’/8e642b98b/13a0a9 ./contracts/interfaces/IInterestRateModel.sol
blef3el5efeb41b2f9ec885ecl11747£0494b994bela322£d746b089671ac8fed ./contracts/utils/GuardedLaunch.sol

86edfc4/938af9aefc349/3923e296£3d846edlcf3d3/9ceb6d9910c52a5bbee . /contracts/utils/ShareCollateralToken.sol

4eal1540£14d3d1d/7132b96£fa/7538£a398cbdabd4bd435eal/£5870d01625fc7/

80aa4d19515112dfbe241£54655ceb3e86bd8c16bdo9b8f2ef6f576cae4dddf23

86c038£9812be9ed96c9£7149e63b93ebed530487c90act5a51d21029at/a707

471cd/799d98b153ac83e1/378129f£08deb/8283dbdel6ddd2a/0a3c66c41f5f

43b0dc0965ed48e0976/b3e4aa5492dc38£0312343ed0a31518ed59cbad43422d

8b5b262aae8abab946/5799eb/f1laaafe88f9c46ae’2ec/0dceb64e2a10534a8

./contracts/utils/ShareDebtToken. sol
./contracts/utils/Managable.sol
./contracts/utils/ShareToken.sol
./contracts/utils/TwoStepOwnable. sol
./contracts/utils/ERC20R.sol

./contracts/mock/MockSiloGovernor.sol

8431b80a5ffb2b11b13702de3cafb644b7e22e6€10119ee1979781d576c14debd
04b207c6257e306d8004ebc88cb573f0bcb76862¢c7£7306a47ad1809915c59da
1b9336c61db1lbl6e16644918el113ae554e40e901056d9d76d98c5£583alfcab0
114b63b53e132£75d£a52493b1c93b264286b2a91dcdd530d52098elc9e3a473
4c76500bb82c2569b6894cc441cfe5f13dlled4afce268eb39c7a877c3c22efl
ddddb175£5a57dd49614d308b0bf2b9901£5444d2673ccOdcl693274£87b432a
c435e569b2bdf9e862786552bd2a272118614£420ba6d520608cd72£79109ae9
600acc4dee6£85£f5c187159£5e6ec18b991de8df84dall615c68d6bd1706622
e79a4d1aab098b2a4210ad3478c50b133c8aab665c8c148a5435fe4cbbdl3c4£3
eba7dd8c38c3£15145582527£f4ec6£21845e760b51335bded945983bc4561641
9d072017a41c43bfb4389357665ae53cfde8a707397£ab69c5a280d7dc9906a3
cede®685c50e09da38091c8d63d800dcb8ab023ece5fcee5416b369a%9aed4lad/
bd8f04al4bcbadctS5ed7a628cdf32feb3d63128d3dd7¢c281bb6bdd18d0803bec?
3b7531£754d56e0a5a267f£fd133f6eda592ela2916edaleb776a107661bfd0ab
19b250cP0bb6blalf/7baed2286£04cf48ba8123fdbbaeec43eeb4d4c98a96aba
ce8f4e4a92715a7d7e56aak4db1c98514def5a42eaebb5b4b2d01ba20284£025
192d4baa971aa3ad3d9c9cecO16b35£227bd557£d2542746£667d385clela29a

bcd942810a06a6a064dd23c947/£258d14327£76023f7eec3£35fa8d241313fb

Tests

20b4c1bOcf75c9deee7969dfeb6£80a5d373b£69e9093ddfaked6b34£ddf3339
a2c9a6fda2cef370a2a495b3f7a5d694e22fe@52d2f23ba9f4c59c49e8dcdbfc
144edb49a43el1de’7078eee’7d32eedl116cb396b077369940ef0b7£2d352145e4b
039480£d26aaa03fcc6£9282b22bcfd8410fad2af7486881575058b3021716c0O
1d334ead62f99cc3cbf60ac/a9d89061ed2e9fcf4f95a6fcledaebdbb68cflfal
6e£d18dd973ea959638316838fd3fe3a4d56b07a3742e1035d38225bda83bd31
£d0d53cdb874794cd70elblbb5e3efe575869£92a62852686e35dbeae4daldbel
alf55c550£9c4444d3a45e9ba85003e7e5£612160£07551£70460d5bdbla81a3
829d94£d£20204399a702b53c68e4dab626ccd25££185d9085£d84baf31bcfe76
dac3441£f6b7c4b7e9e3731a79470695eb25dc756£53£f7d27felce8a08543£63b
4544ebbecde9bfc102002e748677£9528da57288eccb6be856797ea8e81599fct
245d97a008£cd22c061£09540c599b5322958d65c8c8bell1191bf33a6758bb35
79£d05b54490d275d489b71726535d27e9889a224£7b0c930b35bed510446b76
97888bd820ffe59b8c8b88£039860c603ed28bB7dad344ee50541d4bf8fcf3e5
104d36346081389£8757e5b9f57c5acla307a3blfb22ecc73385ee1468cefb35
538214c18ca937el12576al0ce253fa35c3835dfface’/da3cl/b693e/7c£09a557
4a0a0d98c9533abfb3cc98346e6ed99clala5dddel6fcf21815a451c8f556f1le
£04b2439£62e92833560aae1833a5b95d5f9bec13b2eb2b2572648062ddac6b3
52e503c2719e84c332e11ba3168b781aef2£d88055875e6£d0811deb3dcd522a
daa882bad515903899b82814abf2f9a823311930ad3ccccc4537068ad43/7e5eb
36e47bebbb69£4825b42777ec7193db66399d41leecfO4aelec4dct344cb905b7
929d9a678a82be2b0£f3bd188558e72284£d703d217d76bd9b6baadlela29825af
b521d1da98dbd8d5395819b86b6e9af8af161bd908bceb3792ecc7b493eb4375
db699£f7£fbc14d43222ealf1c8c49cc3967c0404£d937784e65af04£9f£652e9f
83505d2477011c4bd3elclebbecbbecff396d45£7¢c7a910£3274620e090e01430b
6aa565f8e7c70afbffd10a8621dc9ac02£4488a23e62bb4£052818948a91064d
e8787290a7401£421e6d2a5184831b77b01£d4£7999d7£8d74b550e56134f61a
6aa565f8e7c70afbffd10a8621dc9ac02£4488a23e62bb4£052818948a91064d
85ab991ad@4cdefcb8f3b071a9ed2345ea2d58538d2ea39d0f258c8b30abde23
b9438a6ad0c79fa7dbfc8557£0453c173f16dec5be779%eablee86£13322503a2
d889c1074d4a3686e3ec39a304fb32ebe5bb84be2df331d19fa83f4e2ad37cd7
5aa8aab52fada’732ce9bf57£9£d9793¢c9065b337bcb34c1c3d019d8d69fche84
e9455b92a314d77ca®2cd32c4c405cb71b5777b853a318832b11ad59789£4724d
a900cOclaa3ed8a41360cbab402de41f0b0@5cbbfec1c24d41900838110b27798
74e213£9e50919¢c27425711659d9%eeec52df0dc2124£a08cb8e178b83d443192
4a5056e438be959447e22al116e7a676£19a71e6062028714a829c99871705822
6926b3ceb75b066126eldbab5ae524bBa2f70ab6ef4£5bledd@dcO7b73e34a692

eda/ad84a6£71a789be21b78d638d963£63a18915dab60f878a9cb/7915ef2cebb

./contracts/mock/Forwarder.sol
./contracts/mock/MockPriceFetchersRepository.sol
./contracts/mock/MockLiquidationHelper. sol
./contracts/mock/TestTokenSymbol . sol
./contracts/mock/MockERC20. sol
./contracts/Lib/PRBMathSD59x18. sol
./contracts/lib/ModelStats. sol
./contracts/Lib/PRBMathCommon. sol
./contracts/lib/Solvency.sol

./contracts/lib/Ping.sol
./contracts/lib/TokenSymbol . sol
./contracts/lib/EasyMath.sol
./contracts/governance/SiloGovernanceToken. sol
./contracts/governance/SiloGovernor.sol
./contracts/priceProviders/PriceProvider. sol
./contracts/priceProviders/uniswapV3/UniswapV3PriceProvider. sol
./contracts/priceProviders/uniswapV3/TwoStepOwnable. sol

./contracts/priceProviders/balancerV2/BalancerV2PriceProvider. sol

./test/InterestRateModel .unit.test.ts
./test/SiloLens.unit.test.ts
./test/SiloRouter.unit.test.ts
./test/TokensFactory.unit.test.ts
./test/Silo.unit.test.ts
./test/SiloScenarios.test.ts
./test/SiloFactory.unit.test.ts
./test/deployments.integration.test.ts
./test/PriceProvidersRepository.unit.test.ts
./test/BaseSilo.test.ts
./test/SiloRepository.unit.test.ts
./test/SiloRouter.integration.test.ts
./test/helpers/mocks.ts

./test/helpers/utils.ts

./test/helpers/index.ts

./test/helpers/time.ts
./test/helpers/intelliJRequirements.ts
./test/helpers/assertions.ts
./test/helpers/erc?20.ts
./test/helpers/constants/rinkeby.ts
./test/helpers/constants/eth.ts
./test/helpers/constants/polygon.ts
./test/liquidation/LiquidationHelper.test.ts
./test/utils/ShareDebtToken.unit.test.ts
./test/utils/ShareCollateralToken.unit.test.ts
./test/utils/UniswapV3Swap.test.ts
./test/utils/GuardedLaunch.unit.test.ts
./test/utils/BalancerV2Swap.test.ts
./test/utils/ShareToken.unit.test.ts
./test/utils/ERC20R.unit.test.ts
./test/utils/common/ISwapper.test.ts
./test/governance/SiloSnapshotWrapper.intergarion.test.ts
./test/governance/SiloGovernor.unit.test.ts
./test/governance/TreasuryVester.integration.test.ts
./test/governance/SiloGovernanceToken.unit.test.ts
./test/priceProviders/UniswapV3.unit.test.ts
./test/priceProviders/common.integration.test.ts

./test/priceProviders/BalancerV2.unit.test.ts

Changelog

» 2022-05-13 - Initial report
« 2022-06-27 - Reaudit update (4cQeltbe)

« 2022-07-14% - Final reaudit (4be2bdd)

About Quantstamp

Quantstamp is a ¥ Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,
and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected S5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment
services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;
however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.
Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.
Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.
Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.
Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

n Quantstamp’ Silo 2 Audit

